skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dzewaltowski, Alex C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. IntroductionBiomechanical changes due to aging increase the oxygen consumption of walking by over 30%. When this is coupled with reduced oxygen uptake capacity, the ability to sustain walking becomes compromised. This reduced physical activity and mobility can lead to further physical degeneration and mortality. Unfortunately, the underlying reasons for the increased metabolic cost are still inadequately understood. While motion capture systems can measure signals with high temporal resolution, it is impossible to directly characterize the fluctuation of metabolic cost throughout the gait cycle. MethodsTo address this issue, this research focuses on computing the metabolic cost time series from the mean value using two neural-network-based approaches: autoencoders (AEs) and expanders. For the AEs, the encoders are designed to compress the input time series down to their mean value, and the decoder expands those values into the time series. After training, the decoder is extracted and applied to mean metabolic cost values to compute the time series. A second approach leverages an expander to map the mean values to the time series without an encoder. The networks are trained using ten different metabolic cost models generated by a computational walking model that simulates the gait cycle subjected to 35 different robotic perturbations without using experimental input data. The networks are validated using the estimated metabolic costs for the unperturbed gait cycle. ResultsThe investigation found that AEs without tied weights and the expanders performed best using nonlinear activation functions, while the AEs with tied weights performed best with linear activation functions. Unexpectedly, the results show that the expanders outperform the AEs. DiscussionA limitation of this research is the reliance on time series for the initial training. Future efforts will focus on developing methods that overcome this issue. Improved methods for estimating within-stride fluctuations in metabolic cost have the potential of improving rehabilitation and assistive devices by targeting the gait phases with increased metabolic cost. This research could also be applied to expand sparse measurements to locations or times that were not measured explicitly. This application would reduce the number of measurement points required to capture the response of a system. 
    more » « less
    Free, publicly-accessible full text available June 20, 2026
  2. Abstract Metabolic cost greatly impacts trade-offs within a variety of human movements. Standard respiratory measurements only obtain the mean cost of a movement cycle, preventing understanding of the contributions of different phases in, for example, walking. We present a method that estimates the within-stride cost of walking by leveraging measurements under different force perturbations. The method reproduces time series with greater consistency (r = 0.55 and 0.80 in two datasets) than previous model-based estimations (r = 0.29). This perturbation-based method reveals how the cost of push-off (10%) is much smaller than would be expected from positive mechanical work (~ 70%). This work elucidates the costliest phases during walking, offering new targets for assistive devices and rehabilitation strategies. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. This study focused on designing and evaluating a bilateral semi-rigid hip exoskeleton. The exoskeleton assisted the hip joint, capitalizing on its proximity to the body’s center of mass. Unlike its rigid counterparts, the semi-rigid design permitted greater freedom of movement. A temporal force-tracking controller allowed us to prescribe torque profiles during walking. We ensured high accuracy by tuning control parameters and series elasticity. The evaluation involved experiments with ten participants across ten force profile conditions with different end-timings and peak magnitudes. Our findings revealed a trend of greater reductions in metabolic cost with assistance provided at later timings in stride and at greater magnitudes. Compared to walking with the exoskeleton powered off, the largest reduction in metabolic cost was 9.1%. This was achieved when providing assistance using an end-timing at 44.6% of the stride cycle and a peak magnitude of 0.11 Nm kg−1. None of the tested conditions reduced the metabolic cost compared to walking without the exoskeleton, highlighting the necessity for further enhancements, such as a lighter and more form-fitting design. The optimal end-timing aligns with findings from other soft hip exosuit devices, indicating a comparable interaction with this prototype to that observed in entirely soft exosuit prototypes. 
    more » « less